3.2.11 \(\int \frac {a+a \sec (c+d x)}{\sqrt {e \sin (c+d x)}} \, dx\) [111]

Optimal. Leaf size=103 \[ \frac {a \text {ArcTan}\left (\frac {\sqrt {e \sin (c+d x)}}{\sqrt {e}}\right )}{d \sqrt {e}}+\frac {a \tanh ^{-1}\left (\frac {\sqrt {e \sin (c+d x)}}{\sqrt {e}}\right )}{d \sqrt {e}}+\frac {2 a F\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{d \sqrt {e \sin (c+d x)}} \]

[Out]

a*arctan((e*sin(d*x+c))^(1/2)/e^(1/2))/d/e^(1/2)+a*arctanh((e*sin(d*x+c))^(1/2)/e^(1/2))/d/e^(1/2)-2*a*(sin(1/
2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticF(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2))*sin(d*x+c)
^(1/2)/d/(e*sin(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.11, antiderivative size = 103, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {3957, 2917, 2644, 335, 218, 212, 209, 2721, 2720} \begin {gather*} \frac {a \text {ArcTan}\left (\frac {\sqrt {e \sin (c+d x)}}{\sqrt {e}}\right )}{d \sqrt {e}}+\frac {a \tanh ^{-1}\left (\frac {\sqrt {e \sin (c+d x)}}{\sqrt {e}}\right )}{d \sqrt {e}}+\frac {2 a \sqrt {\sin (c+d x)} F\left (\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right )}{d \sqrt {e \sin (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[c + d*x])/Sqrt[e*Sin[c + d*x]],x]

[Out]

(a*ArcTan[Sqrt[e*Sin[c + d*x]]/Sqrt[e]])/(d*Sqrt[e]) + (a*ArcTanh[Sqrt[e*Sin[c + d*x]]/Sqrt[e]])/(d*Sqrt[e]) +
 (2*a*EllipticF[(c - Pi/2 + d*x)/2, 2]*Sqrt[Sin[c + d*x]])/(d*Sqrt[e*Sin[c + d*x]])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2644

Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(a*f), Subst[Int[
x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&
 !(IntegerQ[(m - 1)/2] && LtQ[0, m, n])

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2917

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)
*(x_)]), x_Symbol] :> Dist[a, Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^n, x], x] + Dist[b/d, Int[(g*Cos[e + f*x
])^p*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x]

Rule 3957

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[(g*Co
s[e + f*x])^p*((b + a*Sin[e + f*x])^m/Sin[e + f*x]^m), x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {a+a \sec (c+d x)}{\sqrt {e \sin (c+d x)}} \, dx &=-\int \frac {(-a-a \cos (c+d x)) \sec (c+d x)}{\sqrt {e \sin (c+d x)}} \, dx\\ &=a \int \frac {1}{\sqrt {e \sin (c+d x)}} \, dx+a \int \frac {\sec (c+d x)}{\sqrt {e \sin (c+d x)}} \, dx\\ &=\frac {a \text {Subst}\left (\int \frac {1}{\sqrt {x} \left (1-\frac {x^2}{e^2}\right )} \, dx,x,e \sin (c+d x)\right )}{d e}+\frac {\left (a \sqrt {\sin (c+d x)}\right ) \int \frac {1}{\sqrt {\sin (c+d x)}} \, dx}{\sqrt {e \sin (c+d x)}}\\ &=\frac {2 a F\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{d \sqrt {e \sin (c+d x)}}+\frac {(2 a) \text {Subst}\left (\int \frac {1}{1-\frac {x^4}{e^2}} \, dx,x,\sqrt {e \sin (c+d x)}\right )}{d e}\\ &=\frac {2 a F\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{d \sqrt {e \sin (c+d x)}}+\frac {a \text {Subst}\left (\int \frac {1}{e-x^2} \, dx,x,\sqrt {e \sin (c+d x)}\right )}{d}+\frac {a \text {Subst}\left (\int \frac {1}{e+x^2} \, dx,x,\sqrt {e \sin (c+d x)}\right )}{d}\\ &=\frac {a \tan ^{-1}\left (\frac {\sqrt {e \sin (c+d x)}}{\sqrt {e}}\right )}{d \sqrt {e}}+\frac {a \tanh ^{-1}\left (\frac {\sqrt {e \sin (c+d x)}}{\sqrt {e}}\right )}{d \sqrt {e}}+\frac {2 a F\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{d \sqrt {e \sin (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.97, size = 193, normalized size = 1.87 \begin {gather*} \frac {4 a \cos \left (\frac {1}{2} (c+d x)\right ) \left (4 F\left (\left .\text {ArcSin}\left (\frac {1}{\sqrt {\tan \left (\frac {1}{4} (c+d x)\right )}}\right )\right |-1\right )+\sqrt {2} \left (\Pi \left (-1-\sqrt {2};\left .\text {ArcSin}\left (\frac {1}{\sqrt {\tan \left (\frac {1}{4} (c+d x)\right )}}\right )\right |-1\right )-\Pi \left (1-\sqrt {2};\left .\text {ArcSin}\left (\frac {1}{\sqrt {\tan \left (\frac {1}{4} (c+d x)\right )}}\right )\right |-1\right )-\Pi \left (-1+\sqrt {2};\left .\text {ArcSin}\left (\frac {1}{\sqrt {\tan \left (\frac {1}{4} (c+d x)\right )}}\right )\right |-1\right )+\Pi \left (1+\sqrt {2};\left .\text {ArcSin}\left (\frac {1}{\sqrt {\tan \left (\frac {1}{4} (c+d x)\right )}}\right )\right |-1\right )\right )\right )}{d \sqrt {1-\cot ^2\left (\frac {1}{4} (c+d x)\right )} \sqrt {e \sin (c+d x)} \sqrt {\tan \left (\frac {1}{4} (c+d x)\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sec[c + d*x])/Sqrt[e*Sin[c + d*x]],x]

[Out]

(4*a*Cos[(c + d*x)/2]*(4*EllipticF[ArcSin[1/Sqrt[Tan[(c + d*x)/4]]], -1] + Sqrt[2]*(EllipticPi[-1 - Sqrt[2], A
rcSin[1/Sqrt[Tan[(c + d*x)/4]]], -1] - EllipticPi[1 - Sqrt[2], ArcSin[1/Sqrt[Tan[(c + d*x)/4]]], -1] - Ellipti
cPi[-1 + Sqrt[2], ArcSin[1/Sqrt[Tan[(c + d*x)/4]]], -1] + EllipticPi[1 + Sqrt[2], ArcSin[1/Sqrt[Tan[(c + d*x)/
4]]], -1])))/(d*Sqrt[1 - Cot[(c + d*x)/4]^2]*Sqrt[e*Sin[c + d*x]]*Sqrt[Tan[(c + d*x)/4]])

________________________________________________________________________________________

Maple [A]
time = 0.17, size = 117, normalized size = 1.14

method result size
default \(\frac {\frac {a \arctanh \left (\frac {\sqrt {e \sin \left (d x +c \right )}}{\sqrt {e}}\right )}{\sqrt {e}}+\frac {a \arctan \left (\frac {\sqrt {e \sin \left (d x +c \right )}}{\sqrt {e}}\right )}{\sqrt {e}}-\frac {a \sqrt {-\sin \left (d x +c \right )+1}\, \sqrt {2 \sin \left (d x +c \right )+2}\, \left (\sqrt {\sin }\left (d x +c \right )\right ) \EllipticF \left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )}{\cos \left (d x +c \right ) \sqrt {e \sin \left (d x +c \right )}}}{d}\) \(117\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))/(e*sin(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

(a/e^(1/2)*arctanh((e*sin(d*x+c))^(1/2)/e^(1/2))+a/e^(1/2)*arctan((e*sin(d*x+c))^(1/2)/e^(1/2))-a*(-sin(d*x+c)
+1)^(1/2)*(2*sin(d*x+c)+2)^(1/2)*sin(d*x+c)^(1/2)*EllipticF((-sin(d*x+c)+1)^(1/2),1/2*2^(1/2))/cos(d*x+c)/(e*s
in(d*x+c))^(1/2))/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))/(e*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

e^(-1/2)*integrate((a*sec(d*x + c) + a)/sqrt(sin(d*x + c)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 4.06, size = 144, normalized size = 1.40 \begin {gather*} \frac {{\left (4 \, \sqrt {2} \sqrt {-i} a {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 4 \, \sqrt {2} \sqrt {i} a {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 2 \, a \arctan \left (\frac {\sin \left (d x + c\right ) - 1}{2 \, \sqrt {\sin \left (d x + c\right )}}\right ) + a \log \left (\frac {\cos \left (d x + c\right )^{2} - 4 \, {\left (\sin \left (d x + c\right ) + 1\right )} \sqrt {\sin \left (d x + c\right )} - 6 \, \sin \left (d x + c\right ) - 2}{\cos \left (d x + c\right )^{2} + 2 \, \sin \left (d x + c\right ) - 2}\right )\right )} e^{\left (-\frac {1}{2}\right )}}{4 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))/(e*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/4*(4*sqrt(2)*sqrt(-I)*a*weierstrassPInverse(4, 0, cos(d*x + c) + I*sin(d*x + c)) + 4*sqrt(2)*sqrt(I)*a*weier
strassPInverse(4, 0, cos(d*x + c) - I*sin(d*x + c)) + 2*a*arctan(1/2*(sin(d*x + c) - 1)/sqrt(sin(d*x + c))) +
a*log((cos(d*x + c)^2 - 4*(sin(d*x + c) + 1)*sqrt(sin(d*x + c)) - 6*sin(d*x + c) - 2)/(cos(d*x + c)^2 + 2*sin(
d*x + c) - 2)))*e^(-1/2)/d

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} a \left (\int \frac {1}{\sqrt {e \sin {\left (c + d x \right )}}}\, dx + \int \frac {\sec {\left (c + d x \right )}}{\sqrt {e \sin {\left (c + d x \right )}}}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))/(e*sin(d*x+c))**(1/2),x)

[Out]

a*(Integral(1/sqrt(e*sin(c + d*x)), x) + Integral(sec(c + d*x)/sqrt(e*sin(c + d*x)), x))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))/(e*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)/sqrt(e*sin(d*x + c)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {a+\frac {a}{\cos \left (c+d\,x\right )}}{\sqrt {e\,\sin \left (c+d\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a/cos(c + d*x))/(e*sin(c + d*x))^(1/2),x)

[Out]

int((a + a/cos(c + d*x))/(e*sin(c + d*x))^(1/2), x)

________________________________________________________________________________________